Coordinate Measuring Machine (CMM)

A coordinate measuring machine is a device that measures the geometry of physical objects by sensing discrete points on the surface of the object with a probe. Various types of probes are used in CMMs, including mechanical, optical, laser, and white light.
Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled. CMMs typically specify a probe's position in terms of its displacement from a reference position in a three-dimensional Cartesian coordinate system (i.e., with XYZ axes). In addition to moving the probe along the X, Y, and Z axes, many machines also allow the probe angle to be controlled to allow measurement of surfaces that would otherwise be unreachable.
Coordinate measuring machineat present is not only a kind of laboratory measurement instrument, but is widely used in machining and assembly workshop. In the automotive industry, the CMM is the necessary measuring tool of product quality assurance and quality control.
                                                      OR
A coordinate measuring machine (CMM) works in much the same way as your finger when it traces map coordinates; its three axes form the machine's coordinate system. Instead of a finger, the CMM uses a probe to measure points on a workpiece. Each point on the workpiece is unique to the machine's coordinate system.
CMM. Full form: Cubic metres per minute. Definition: The volume of air in cubic metres that the fan can move in a minute at a defined speed. Another unit is CFM. Cubic feet per minute.
There are four basic types of coordinate measuring machines: bridge, cantilever, gantry and horizontal arm. Each one provides unique advantages based on the components being measured. Bridge. The bridge is the most popular style of coordinate measuring machine.

The typical 3D "bridge" CMM allows probe movement along three axes, X, Y and Z, which are orthogonal to each other in a three-dimensional Cartesian coordinate system. Each axis has a sensor that monitors the position of the probe on that axis, typically with micrometer precision. When the probe contacts (or otherwise detects) a particular location on the object, the machine samples the three position sensors, thus measuring the location of one point on the object's surface. This process is repeated as necessary, moving the probe each time, to produce a "point cloud" which describes the surface areas of interest.

A common use of CMMs is in manufacturing and assembly processes to test a part or assembly against the design intent. In such applications, point clouds are generated which are analysed via regression algorithms for the construction of features. These points are collected by using a probe that is positioned manually by an operator or automatically via Direct Computer Control (DCC). DCC CMMs can be programmed to repeatedly measure identical parts; thus an automated CMM is a specialized form of industrial robot.

Portable CMM: Whereas traditional CMMs use a probe that moves on three Cartesian axes to measure an object’s physical characteristics, portable CMMs use either articulated arms or, in the case of optical CMMs, arm-free scanning systems that use optical triangulation methods and enable total freedom of movement around the object.

Portable CMMs with articulated arms have six or seven axes that are equipped with rotary encoders, instead of linear axes. Portable arms are lightweight (typically less than 20 pounds) and can be carried and used nearly anywhere. However, optical CMMs are increasingly being used in the industry. Designed with compact linear or matrix array cameras (like the Microsoft Kinect), optical CMMs are smaller than portable CMMs with arms, feature no wires, and enable users to easily take 3D measurements of all types of objects located almost anywhere.

Certain nonrepetitive applications such as reverse engineering, rapid prototyping, and large-scale inspection of parts of all sizes are ideally suited for portable CMMs. The benefits of portable CMMs are multifold. Users have the flexibility in taking 3D measurements of all types of parts and in the most remote/difficult locations. They are easy to use and do not require a controlled environment to take accurate measurements. Moreover, portable CMMs tend to cost less than traditional CMMs.

The inherent trade-offs of portable CMMs are manual operation (they always require a human to use them). In addition, their overall accuracy can be somewhat less accurate than that of a bridge type CMM and is less suitable for some applications.

No comments:

Post a Comment